Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation.

نویسندگان

  • Yuan Liu
  • Zheng Yan
  • Qing Lin
  • Xuelin Guo
  • Mengdi Han
  • Kewang Nan
  • Keh-Chih Hwang
  • Yonggang Huang
  • Yihui Zhang
  • John A Rogers
چکیده

Three-dimensional (3D) helical mesostructures are attractive for applications in a broad range of microsystem technologies, due to their mechanical and electromagnetic properties as stretchable interconnects, radio frequency antennas and others. Controlled compressive buckling of 2D serpentine-shaped ribbons provides a strategy to formation of such structures in wide ranging classes of materials (from soft polymers to brittle inorganic semiconductors) and length scales (from nanometer to centimeter), with an ability for automated, parallel assembly over large areas. The underlying relations between the helical configurations and fabrication parameters require a relevant theory as the basis of design for practical applications. Here, we present an analytic model of compressive buckling in serpentine microstructures, based on the minimization of total strain energy that results from various forms of spatially dependent deformations. Experiments at micro- and millimeter-scales, together with finite element analyses (FEA), were exploited to examine the validity of developed model. The theoretical analyses shed light on general scaling laws in terms of three groups of fabrication parameters (related to loading, material and 2D geometry), including a negligible effect of material parameters and a square root dependence of primary displacements on the compressive strain. Furthermore, analytic solutions were obtained for the key physical quantities (e.g., displacement, curvature and maximum strain). A demonstrative example illustrates how to leverage the analytic solutions in choosing the various design parameters, such that brittle fracture or plastic yield can be avoided in the assembly process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses.

Formation of 3D mesostructures in advanced functional materials is of growing interest due to the widespread envisioned applications of devices that exploit 3D architectures. Mechanically guided assembly based on compressive buckling of 2D precursors represents a promising method, with applicability to a diverse set of geometries and materials, including inorganic semiconductors, metals, polyme...

متن کامل

Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.

Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as o...

متن کامل

The Analytic Technique and Experimental Research Methods of Post-buckling about Slender Rod Strings in Wellbore

The buckling behavior of rod strings in wellbore is one of the key issues in petroleum engineering. The slender rod strings in vertical wellbore were selected as research objects. Based on the energy method, the critical load formulas of sinusoidal and helical buckling were derived for the string with the bottom of the wellbore pressure. According to the sinusoidal and helical buckling’s geomet...

متن کامل

Validation of Shell Theory for Modeling the Radial Breathing Mode of a Single-Walled Carbon Nanotube (RESEARCH NOTE)

In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...

متن کامل

A numerical and experimental study on buckling and post-buckling of cracked plates under axial compression load

Existence of cracks in industrial structures is one of the important causes of their failure, especially when they are subjected to important axial compressive forces that might lead to buckling. Therefore, it must be considered in stress analysis and designing and loading of such structures. In this paper, the buckling and post-buckling behaviors of stainless-steel cracked plates under axial c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advanced functional materials

دوره 26 17  شماره 

صفحات  -

تاریخ انتشار 2016